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Who am I

Background:

▶ 2019, BSc in Mathematics, Higher School of Economics, Moscow, Russia

▶ 2021, MSc in Data Science, Skoltech & HSE, Moscow, Russia

▶ wide experience in deep learning (audio, images, generative models)

▶ interested in probability, bayesian DL, generative models, HPC+DL, math of DL...

Current:

▶ PhD student at Inria and UGA supervised by Bruno Raffin

▶ started 4 months ago

▶ high-performance online deep learning models trained on synthetic data
(keywords, yes)
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Motivations

DeepMelissa:
framework for training deep learning models on synthetic data (on-the-fly).

Questions:

1 data is serialized : how to overcome inductive bias?
→ how to give training points to NN (replay-buffer)?

2 data is not finite: how to overcome bad exploration of global minima?
→ how to control training of NN (learning rate)?

3 data is high-dimensional: how to get good generalization of NN fast?
→ how to get to know probability space of simulator (probabilistic programming)?
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Motivations

Goal: being in (some kind of) full probabilistic control of simulator in order to train
NN efficiently.

NN can be trained for some DL task that uses simulator’s data, specifically it can be
surrogate model that mimics simulator.
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SBI
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What is SBI

Simulation Based Inference [1]

Simulation-based – data comes from simulator
Inference – getting parameters of distribution from data
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Problem statement

Simulator – computer program f : θ → X , where θ is a vector of input parameters,
which describes a mechanistic model (e.g. for CFD: size of tube, density of ink).

What we actually want is to use a simulator not as a black box but as a probabilistic
model and to learn its distributions.
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Problem Statement of SBI

Infer θ from Xobs – posterior P(θ|Xobs) = ?

Known/proposed prior P(θ). Bayes theorem: P(θ|Xobs) ∼ P(Xobs |θ)P(θ) ?

Problem: likelihood P(X |θ) – unknown / intractable / impossible to compute, because
of simulator nature!
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Traditional approaches

Traditional approaches

▶ ABC (1984, 2002). Approximate Bayesian Computation:
θi ∼ p(θ), xsim ∼ p(·|θi ), if dist(xobs , xsim) small then θi is from posterior.

▶ DE (1984). Density estimation methods:
estimate distribution with histograms or KDE using a lot of data;

Disadvantages:

curse of dimensionality

poorly scales to HD

amortization

sample inefficiency

low-dimensional stats

bad quality of inference
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New directions

Expansion of SBI toolbox by three forces:

▶ neural networks for probabilistic models (2015+)

▶ active learning - guide a solver

▶ internal integration with a solver
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Neural network approaches

Conditional neural density estimator - parametric model qϕ controlled by a set of
parameters ϕ (weights of NN), which:

▶ takes a pair of data points (u, v)

▶ outputs a conditional probability density qϕ(u|v)
▶ trains by optimizing

∑N
n=1 log qϕ(un|vn) → maxϕ

▶ learns approximate conditional p(u|v) (with flexible model, enough training data)
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NN Methods
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Methods

It is all about Bayes

p(θ|x) ∝ p(X |θ)p(θ)

SNLE [2]:
learning likelihood
p(X |θ)

SNPE[3]:
learning posterior
p(θ|X )

SNRE[4]:
learning
likelihood-ratio
p(X |θ0)/p(X |θ1)

SNVI[5]:
learning
likelihood(-ration) in
variational setting
(optimizing ELBO
with GNN)
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Learning likelihood (2019)

Xobs - observed data
Estimator qw (x |θ) – neural network (normalizing flow)
Set prior p(θ)
Set approximate of posterior p′0(θ|xobs) as prior
In every round:

1 sample N parameter vectors from last round
approximate of posterior

2 get N simulations with this parameters

3 train NN on all the data (from previous rounds and
current)

4 set posterior approximation as product of
NN-likelihood on observed data and prior
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Learning posterior (2019)

Approximate directly posterior (rounds)

1 propose prior

2 automatically update

3 set posterior=prior (active learning
concept)

4 converge
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Methods comparison

SNPE SNLE

SBI 17/33 S.Dymchenko, B. Raffin



Introduction SBI NN Methods Normalizing Flows Discussion References

Methods comparison

SNPE SNLE

SBI 18/33 S.Dymchenko, B. Raffin



Introduction SBI NN Methods Normalizing Flows Discussion References

Normalizing Flows
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What generative model is used in both for approximating densities?

Normalizing flows.
Estimate complex distribution by map from latent space, e.g. N (0, 1).

px(xi ) = pz(f (xi ))

∣∣∣∣det ∂f (xi )∂xi

∣∣∣∣
Generative model:

▶ likelihood evaluation z = f (x)

▶ sampling procedure x = T (z)
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What generative model is used in both?

Normalizing flows .
Estimate complex distribution by map from latent space, e.g. N (0, 1).

px(xi ) =
1

2π
exp(−1

2
((log x1)

2+

+(x2 − 2 log x1)
2)) ∗ 1

x1

Generative model:

▶ likelihood evaluation z = f (x)

▶ sampling procedure x = T (z)

Can we have T (z) = f −1(z)? Problem statement: find f (x)
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To compute easily - low-triangular/block-triangular.
UPD Problem statement: how?
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MAF: masked autoregressive flow

MAF [6]
All zi changes: low-triangular matrix. And µksk – neural networks.
Likelihood evaluation is fast.
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MAF

1) Chain rule for sequential data
(mesh/timesteps)
2) Masked NN
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Density estimation with MAF

Compute µ and s, evaluate z .
Fast, parallelizable.
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Sampling with IAF

All the xi can be computed in a
single pass of D threads working in
parallel.
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MAF+IAF
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Discussion
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Last week update

ETALUMIS [7]: large-scale simulator as a probabilistic program
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Future direction

1 Usually SBI experiments are low-scale
−→ Can we scale these to high-dimensional data (time-series meshes)?

2 Usually SBI is used directly for inverse problem on observations
−→ Can we use computed likelihood/posterior as part of framework to learn some
NN on simulations in order to have control on data to simulate?

3 Concepts on active learning, probabilistic view on simulators, using normalizing
flows seems prospective and interesting, should be done more state-of-the-art
literature review in this direction.
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