

Simulation-based inference and generative neural networks. Early explorations.

Sofya (Sofi) Dymchenko, Bruno Raffin

DFKI-Inria ENGAGE project meeting

July 4-5, 2022

Introduction	NN Methods	Normalizing Flows	Discussion	References
0000				

Introduction

Introduction 0●00	SBI 0000000	NN Methods 000000	Normalizing Flows 000000000	Discussion 000	References

Who am I

Background:

- ▶ 2019, BSc in Mathematics, Higher School of Economics, Moscow, Russia
- 2021, MSc in Data Science, Skoltech & HSE, Moscow, Russia
- ▶ wide experience in deep learning (audio, images, generative models)
- ▶ interested in probability, bayesian DL, generative models, HPC+DL, math of DL...

Current:

- PhD student at Inria and UGA supervised by Bruno Raffin
- started 4 months ago
- high-performance online deep learning models trained on synthetic data (keywords, yes)

Introduction 00●0	SBI 0000000	NN Methods 000000	Normalizing Flows 000000000	Discussion 000	References

DeepMelissa:

framework for training deep learning models on synthetic data (on-the-fly).

- data is serialized : how to overcome inductive bias?
 → how to give training points to NN (replay-buffer)?
- Q data is not finite: how to overcome bad exploration of global minima? \rightarrow how to control training of NN (learning rate)?
- o data is high-dimensional: how to get good generalization of NN fast?
 → how to get to know probability space of simulator (probabilistic programming)?

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 000	References

DeepMelissa:

framework for training deep learning models on synthetic data (on-the-fly).

- data is serialized : how to overcome inductive bias?
 → how to give training points to NN (replay-buffer)?
- Is high-dimensional: how to get good generalization of NN fast?
 → how to get to know probability space of simulator (probabilistic programming)?

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 000	References

DeepMelissa:

framework for training deep learning models on synthetic data (on-the-fly).

- data is serialized : how to overcome inductive bias?
 → how to give training points to NN (replay-buffer)?
- **a** data is not finite: how to overcome bad exploration of global minima? \rightarrow how to control training of NN (learning rate)?
- In the second se

Introduction 00●0	SBI 0000000	NN Methods 000000	Normalizing Flows 000000000	Discussion 000	References

DeepMelissa:

framework for training deep learning models on synthetic data (on-the-fly).

- data is serialized : how to overcome inductive bias?
 → how to give training points to NN (replay-buffer)?
- Q data is not finite: how to overcome bad exploration of global minima?
 → how to control training of NN (learning rate)?
- I data is high-dimensional: how to get good generalization of NN fast?
 → how to get to know probability space of simulator (probabilistic programming)?

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows 000000000	Discussion 000	References

DeepMelissa:

framework for training deep learning models on synthetic data (on-the-fly).

Questions:

- data is serialized : how to overcome inductive bias? \rightarrow how to give training points to NN (replay-buffer)?
- Q data is not finite: how to overcome bad exploration of global minima?
 → how to control training of NN (learning rate)?
- data is high-dimensional: how to get good generalization of NN fast?

 → how to get to know probability space of simulator (probabilistic programming)?

SBI

Introduction	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 000	References
Motivations					

Goal: being in (some kind of) full probabilistic control of simulator in order to train NN efficiently.

NN can be trained for some DL task that uses simulator's data, specifically it can be **surrogate model that mimics simulator**.

	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	000000	000000	000000000	000	

SBI

Introduction 0000	SBI ⊙●000000	NN Methods 000000	Normalizing Flows	Discussion 000	References
What is SBI					

Simulation Based Inference [1]

Simulation-based – data comes from simulator *Inference* – getting parameters of distribution from data

Introduction 0000	SBI ⊙●○○○○○	NN Methods 000000	Normalizing Flows	Discussion 000	References
What is SBI					

Simulation Based Inference [1]

Simulation-based – data comes from simulator

Inference – getting parameters of distribution from data

Introduction 0000	SBI ⊙●○○○○○	NN Methods 000000	Normalizing Flows	Discussion 000	References
What is SBI					

Simulation Based Inference [1]

Simulation-based – data comes from simulator Inference – getting parameters of distribution from data

Introduction 0000	SBI 00●0000	NN Methods 000000	Normalizing Flows	Discussion 000	References

Problem statement

Simulator – computer program $f : \theta \to X$, where θ is a vector of input parameters, which describes a mechanistic model (e.g. for CFD: size of tube, density of ink).

What we actually want is to use a simulator not as a black box but as a probabilistic model and to learn its distributions.

Introduction 0000	SBI 00●0000	NN Methods 000000	Normalizing Flows	Discussion 000	References

Problem statement

Simulator – computer program $f : \theta \to X$, where θ is a vector of input parameters, which describes a mechanistic model (e.g. for CFD: size of tube, density of ink).

What we actually want is to use a simulator not as a black box but as a probabilistic model and to learn its distributions.

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	000●000	000000	000000000	000	

Problem Statement of SBI

Infer θ from X_{obs} – posterior $P(\theta|X_{obs}) = ?$

Known/proposed prior $P(\theta)$. Bayes theorem: $P(\theta|X_{obs}) \sim P(X_{obs}|\theta)P(\theta)$? **Problem:** likelihood $P(X|\theta)$ – unknown / intractable / impossible to compute, because of simulator nature!

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	000●000	000000	000000000	000	

Problem Statement of SBI

Infer θ from X_{obs} – posterior $P(\theta|X_{obs}) = ?$ Known/proposed prior $P(\theta)$. Bayes theorem: $P(\theta|X_{obs}) \sim P(X_{obs}|\theta)P(\theta)$? Problem: likelihood $P(X|\theta)$ – unknown / intractable / impossible to compute, becaus of simulator nature!

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	000●000	000000	000000000	000	

Problem Statement of SBI

Infer θ from X_{obs} – posterior $P(\theta|X_{obs}) = ?$ Known/proposed prior $P(\theta)$. Bayes theorem: $P(\theta|X_{obs}) \sim P(X_{obs}|\theta)P(\theta)$? Problem: likelihood $P(X|\theta)$ – unknown / intractable / impossible to compute, because of simulator nature!

Introduction 0000	SBI 0000●00	NN Methods 000000	Normalizing Flows	Discussion 000	References

Traditional approaches

Traditional approaches

- ► ABC (1984, 2002). Approximate Bayesian Computation: $\theta_i \sim p(\theta), x_{sim} \sim p(\cdot | \theta_i)$, if dist (x_{obs}, x_{sim}) small then θ_i is from posterior.
- DE (1984). Density estimation methods: estimate distribution with histograms or KDE using a lot of data;

Disadvantages:

curse of dimensionalityamortizationlow-dimensional statspoorly scales to HDsample inefficiencybad quality of inference

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	00000●0	000000	000000000	000	

New directions

Expansion of SBI toolbox by three forces:

- ▶ neural networks for probabilistic models (2015+)
- ▶ active learning guide a solver
- ▶ internal integration with a solver

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	000000●	000000	000000000	000	

Neural network approaches

Conditional neural density estimator - parametric model q_{ϕ} controlled by a set of parameters ϕ (weights of NN), which:

- takes a pair of data points (u, v)
- outputs a conditional probability density $q_{\phi}(u|v)$
- ▶ trains by optimizing $\sum_{n=1}^{N} \log q_{\phi}(u_n | v_n) \rightarrow \max_{\phi}$
- learns approximate conditional p(u|v) (with flexible model, enough training data)

	NN Methods	Normalizing Flows	Discussion	References
	00000			

NN Methods

Introduction 0000	SBI 0000000	NN Methods ○●○○○○	Normalizing Flows	Discussion 000	References
NA - the de					

It is all about Bayes

$p(\theta|x) \propto p(X|\theta)p(\theta)$

SNLE [2]: learning likelihood $p(X|\theta)$ SNPE[3]: learning posterior $p(\theta|X)$ SNRE[4]: learning likelihood-ratio $p(X|\theta_0)/p(X|\theta_1)$ SNVI[5]: learning likelihood(-ration) in variational setting (optimizing ELBO with GNN)

Introduction 0000	SBI 0000000	NN Methods 00●000	Normalizing Flows 000000000	Discussion 000	References

Learning likelihood (2019)

```
X_{obs} - observed data
Estimator q_w(x|\theta) - neural network (normalizing flow)
Set prior p(\theta)
Set approximate of posterior p'_0(\theta|x_{obs}) as prior
In every round:
```

- sample N parameter vectors from last round approximate of posterior
- Ø get N simulations with this parameters
- train NN on all the data (from previous rounds and current)
- set posterior approximation as product of NN-likelihood on observed data and prior

Algorithm 1 APT with per-round proposal updates

Input: simulator with (implicit) density $p(x|\theta)$, data x_o , prior $p(\theta)$, density family q_{ψ} , neural network $F(x, \phi)$, simulations per round N, number of rounds R.

```
\begin{split} \tilde{p}_1(\theta) &:= p(\theta) \\ \text{for } r &= 1 \text{ to } R \text{ do} \\ \text{for } j &= 1 \text{ to } N \text{ do} \\ \text{sample } \theta_{r,j} &\sim \tilde{p}_r(\theta) \\ \text{simulat } x_{r,j} &\sim p[x|\theta_{r,j}) \\ \text{end for} \\ \phi &\leftarrow \arg\min_{\phi} \sum_{i=1}^r \sum_{j=1}^N -\log \tilde{q}_{x_{i,j},\phi}(\theta_{i,j}) \\ \tilde{p}_{r+1}(\theta) &:= q_{F(x_o,\phi)}(\theta) \\ \text{end for} \\ \text{return } q_{F(x_o,\phi)}(\theta) \end{split}
```

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	0000000	000●00	000000000	000	

Learning posterior (2019)

Approximate directly posterior (rounds)

- propose prior
- automatically update
- set posterior=prior (active learning concept)
- Converge

Algorithm 1: Sequential Neural Likelihood (SNL)

Introduction 0000	SBI 0000000	NN Methods 0000●0	Normalizing Flows	Discussion 000	References

Methods comparison

Introduction 0000	SBI 0000000	NN Methods 00000●	Normalizing Flows	Discussion 000	References

Methods comparison

SNPE N = 1000 simulations N = 10000True posterior N = 5000MC $\varepsilon = 0.01$ N $\approx 5e6$ $\varepsilon = 0.1$ N $\approx 1e5$ APT (MDN) APT (MAF)

SNLE 7.2 m SMC ABC Δ. SL SNPE-A SNPE-B NL SNL 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} Number of simulations (log scale)

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 000	References

Normalizing Flows

What generative model is used in both for approximating densities?

Normalizing flows.

Estimate complex distribution by map from latent space, e.g. $\mathcal{N}(0,1)$.

Generative model:

- likelihood evaluation z = f(x)
- sampling procedure x = T(z)

$$p_x(x_i) = p_z(f(x_i)) \left| \det \frac{\partial f(x_i)}{\partial x_i} \right|$$

Normalizing Flows

 Introduction
 SBI
 NN Methods
 Normalizing Flows
 Discussion
 References

 0000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

What generative model is used in both?

Normalizing flows .

Estimate complex distribution by map from latent space, e.g. $\mathcal{N}(0,1)$.

$$p_x(x_i) = rac{1}{2\pi} \exp(-rac{1}{2}((\log x_1)^2 + ((x_2 - 2\log x_1)^2))) * rac{1}{x_1}$$

Generative model:

- likelihood evaluation z = f(x)
- ▶ sampling procedure x = T(z)

Can we have $T(z) = f^{-1}(z)$? Problem statement: find f(x)

 Introduction
 SBI
 NN Methods
 Normalizing Flows
 Discussion
 References

 0000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

What generative model is used in both?

Normalizing flows .

Estimate complex distribution by map from latent space, e.g. $\mathcal{N}(0,1)$.

$$p_{x}(x_{i}) = rac{1}{2\pi} \exp(-rac{1}{2}((\log x_{1})^{2} + ((x_{2} - 2\log x_{1})^{2})) * rac{1}{x_{1}})$$

Generative model:

- likelihood evaluation z = f(x)
- ▶ sampling procedure x = T(z)

Can we have $T(z) = f^{-1}(z)$? Problem statement: find f(x)

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 000	References

To compute easily - low-triangular/block-triangular.

UPD Problem statement: how?

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	0000000	000000	000000000	000	

To compute easily - low-triangular/block-triangular. UPD Problem statement: how?

 Introduction
 SBI
 NN Methods
 Normalizing Flows
 Discussion
 References

 0000
 0000000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

MAF: masked autoregressive flow

MAF [6]

All z_i changes: low-triangular matrix. And $\mu_k s_k$ – neural networks. Likelihood evaluation is fast.

$$z = \mathbf{f}(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ \dots \\ z_k = (x_k - \mu_k(x_{1:k-1})) \odot \exp(-s_k(x_{1:k-1})) \\ \dots \\ \dots \end{cases}$$

	NN Methods	Normalizing Flows	Discussion	References
		000000000		

Jacobian:

$$\left|\det\frac{\partial f(x)}{\partial x}\right| = \exp(-\sum_{j=1}^{D} s_d(x_{1:d-1}))$$

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows 000000●000	Discussion 000	References

MAF

 Chain rule for sequential data (mesh/timesteps)
 Masked NN

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	0000000	000000	0000000000	000	

Density estimation with MAF

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	0000000	000000	00000000●0	000	

Sampling with IAF

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows 00000000●	Discussion 000	References

MAF+IAF

	Base distribution	Target distribution	Model	Data generation	Density estimation
MAF	$\mathbf{z} \sim \pi(\mathbf{z})$	$\mathbf{x} \sim p(\mathbf{x})$	$x_i = z_i \odot \sigma_i(\mathbf{x}_{1:i-1}) + \mu_i(\mathbf{x}_{1:i-1})$	Sequential; slow	One pass; fast
IAF	$ ilde{\mathbf{z}} \sim ilde{\pi}(ilde{\mathbf{z}})$	$ ilde{\mathbf{x}} \sim ilde{p}(ilde{\mathbf{x}})$	$ ilde{x}_i = ilde{z}_i \odot ilde{\sigma}_i(ilde{\mathbf{z}}_{1:i-1}) + ilde{\mu}_i(ilde{\mathbf{z}}_{1:i-1})$	One pass; fast	Sequential; slow

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion ●00	References

Discussion

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 0●0	References

ETALUMIS [7]: large-scale simulator as a probabilistic program

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 00●	References

Usually SBI experiments are low-scale

 \longrightarrow Can we scale these to high-dimensional data (time-series meshes)?

- Usually SBI is used directly for inverse problem on observations —> Can we use computed likelihood/posterior as part of framework to learn some NN on simulations in order to have control on data to simulate?
- Concepts on active learning, probabilistic view on simulators, using normalizing flows seems prospective and interesting, should be done more state-of-the-art literature review in this direction.

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	0000000	000000	000000000	00●	

Usually SBI experiments are low-scale —> Can we scale these to high-dimensional data (time-series meshes)?

- Usually SBI is used directly for inverse problem on observations

 —> Can we use computed likelihood/posterior as part of framework to learn some
 NN on simulations in order to have control on data to simulate?
- Concepts on active learning, probabilistic view on simulators, using normalizing flows seems prospective and interesting, should be done more state-of-the-art literature review in this direction.

Introduction	SBI	NN Methods	Normalizing Flows	Discussion	References
0000	0000000	000000	000000000	00●	

- Usually SBI experiments are low-scale
 - \longrightarrow Can we scale these to high-dimensional data (time-series meshes)?
- Usually SBI is used directly for inverse problem on observations —> Can we use computed likelihood/posterior as part of framework to learn some NN on simulations in order to have control on data to simulate?
- Concepts on active learning, probabilistic view on simulators, using normalizing flows seems prospective and interesting, should be done more state-of-the-art literature review in this direction.

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 00●	References

- Usually SBI experiments are low-scale
 - \longrightarrow Can we scale these to high-dimensional data (time-series meshes)?
- Usually SBI is used directly for inverse problem on observations

 —> Can we use computed likelihood/posterior as part of framework to learn some
 NN on simulations in order to have control on data to simulate?
- Concepts on active learning, probabilistic view on simulators, using normalizing flows seems prospective and interesting, should be done more state-of-the-art literature review in this direction.

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows 000000000	Discussion 000	References
References I					

- Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. *Proceedings of the National Academy of Sciences of the United States of America*, 117(48):30055–30062, 2020.
- [2] George Papamakarios, David C. Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows. *AISTATS*, 2020.
- [3] David S. Greenberg, Marcel Nonnenmacher, and Jakob H. Macke. Automatic posterior transformation for likelihood-free inference. *ICML*, 2019.
- [4] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized approximate ratio estimators. *ICML*, 2020.
- [5] Manuel Glöckler, Michael Deistler, and Jakob H Macke. Variational Methods For Simulation-Based Inference. *ICLR*, 2022.

Introduction 0000	SBI 0000000	NN Methods 000000	Normalizing Flows	Discussion 000	References
References II					

- [6] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. *NeurIPS*, 2017.
- [7] Atilim Güne Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle Cranmer, Prabhat, and Frank Wood. Etalumis: Bringing probabilistic programming to scientific simulators at scale. International Conference for High Performance Computing, Networking, Storage and Analysis, SC, jul 2019.