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Work progress
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Work progress

e Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models

e Weight Offloading
- Non-optimal but efficient

e Rotor+checkmate(Ongoing)

- Combined ideas to be general and efficient

lr

zea—



Weight offloading
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Training iteration

Possibility of training large model in a single GPU

Only keep what is necessary
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Selection

Offload layers that cover most memory needs

Greedy selection

e Assume infinite bandwidth

e Start: every layer in GPU

e Choose w; that covers the most memory overflow
e |terate until memory fits

o A coefficient is introduced for single offloading



Schedule

Greedy schedule

e Insert prefetch and offload operations into F's and B's
e Data required earlier is prefetched first
e Data produced earlier is offloaded first

e One particular case: w; is sent to CPU after B;, but only
deleted after F;



Simulation results

74 layers, batch 32
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Figure: Greedy* represents the Greedy algorithm while weights are not
only offloaded once.
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Rotor+4-checkmate
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Checkmate

Checkmate provides an optimal solution for rematerializations.

Application

e Can deal with any graphs
e ILP with O(n?) variables
e Implementations based on TensorFlow
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Checkmate+Rotor

Rotor is efficient, checkmate is general
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Checkmate+Rotor

Rotor is efficient, checkmate is general

Combined ideas

e One network can be divided into several blocks: e.g. GPT-2
— Decoder

e Each block is (probably) small enough for checkmate

e Rotor can solve the schedule based on the solutions from
checkmate
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Progress

e Checkmate on PyTorch: obtain the computation graph from
any Torch Module

- We can now open the box and generate the
forward&backward graph

- Each node in the graph can be executed by a torch
function/python code
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