Memory saving
for neural network trainng

Xunyi Zhao




Introduction

lrn

zlea—



Work progress

e Rotor: Rematerializing Optimally with pyTORch

- Efficient with sequential models

lr

za—



Work progress

e Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models
e Weight Offloading

- Non-optimal but efficient

lr

za—



Work progress

e Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models

e Weight Offloading
- Non-optimal but efficient

e Rotor+checkmate(Ongoing)

- Combined ideas to be general and efficient

lr

zea—



Weight offloading

lrn

zlea—



Training iteration

Possibility of training large model in a single GPU

Only keep what is necessary

lr

za—



Training iteration

Possibility of training large model in a single GPU

Only keep what is necessary

Forward i




Training iteration

o Sw; «— a1 §:
o 5L 8w
o Wi < wj, 5W,'

5i—1 5i

E



Selection

Offload layers that cover most memory needs

Greedy selection

e Assume infinite bandwidth

e Start: every layer in GPU

e Choose w; that covers the most memory overflow
e |terate until memory fits

o A coefficient is introduced for single offloading



Schedule

Greedy schedule

e Insert prefetch and offload operations into F's and B's
e Data required earlier is prefetched first
e Data produced earlier is offloaded first

e One particular case: w; is sent to CPU after B;, but only
deleted after F;



Simulation results

74 layers, batch 32

H
< 0.06
[=2}
3
<
=
=
0.04 —— Greedy
— L2L
— ILP
—— Greedy*
0.02 —=e )
J
0 2 4 6 8 10 12

Bandwidth(GB/s)

Figure: Greedy* represents the Greedy algorithm while weights are not
only offloaded once.

v d

o Creia—



Rotor+4-checkmate

lrn

zlea—



Checkmate

Checkmate provides an optimal solution for rematerializations.

Application

e Can deal with any graphs
e ILP with O(n?) variables
e Implementations based on TensorFlow

11 &Z’Z‘Ia/—



Checkmate+Rotor

Rotor is efficient, checkmate is general

12

lr

za—



Checkmate+Rotor

Rotor is efficient, checkmate is general

Combined ideas

e One network can be divided into several blocks: e.g. GPT-2
— Decoder

e Each block is (probably) small enough for checkmate

e Rotor can solve the schedule based on the solutions from
checkmate

12 &Z%—



Progress

e Checkmate on PyTorch: obtain the computation graph from
any Torch Module

- We can now open the box and generate the
forward&backward graph

- Each node in the graph can be executed by a torch
function/python code

13



	Introduction
	Weight offloading
	Rotor+checkmate

