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Work progress

• Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models

• Weight Offloading
- Non-optimal but efficient

• Rotor+checkmate(Ongoing)
- Combined ideas to be general and efficient
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Training iteration

Possibility of training large model in a single GPU

Only keep what is necessary

Forward i
• ai ← ai−1, wi

Fi
aiai−1
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Training iteration

Backward i
• δwi ← ai−1, δi ;
• δi−1 ← δi , wi ;
• wi ← wi , δwi

Bi
δiδi−1
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Selection

Offload layers that cover most memory needs

Greedy selection
• Assume infinite bandwidth
• Start: every layer in GPU
• Choose wi that covers the most memory overflow
• Iterate until memory fits
• A coefficient is introduced for single offloading
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Schedule

Greedy schedule
• Insert prefetch and offload operations into F’s and B’s
• Data required earlier is prefetched first
• Data produced earlier is offloaded first
• One particular case: wi is sent to CPU after Bi , but only

deleted after Fi
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Simulation results
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Figure: Greedy* represents the Greedy algorithm while weights are not
only offloaded once.
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Checkmate

Checkmate provides an optimal solution for rematerializations.

Application
• Can deal with any graphs
• ILP with O(n2) variables
• Implementations based on TensorFlow
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Checkmate+Rotor

Rotor is efficient, checkmate is general

Combined ideas
• One network can be divided into several blocks: e.g. GPT-2
→ Decoder
• Each block is (probably) small enough for checkmate
• Rotor can solve the schedule based on the solutions from

checkmate
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Progress

• Checkmate on PyTorch: obtain the computation graph from
any Torch Module
- We can now open the box and generate the

forward&backward graph
- Each node in the graph can be executed by a torch

function/python code
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