
Memory saving
for neural network trainng
Xunyi Zhao



2

Introduction01



Work progress

• Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models

• Weight Offloading
- Non-optimal but efficient

• Rotor+checkmate(Ongoing)
- Combined ideas to be general and efficient

3



Work progress

• Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models

• Weight Offloading
- Non-optimal but efficient

• Rotor+checkmate(Ongoing)
- Combined ideas to be general and efficient

3



Work progress

• Rotor: Rematerializing Optimally with pyTORch
- Efficient with sequential models

• Weight Offloading
- Non-optimal but efficient

• Rotor+checkmate(Ongoing)
- Combined ideas to be general and efficient

3



4

Weight offloading02



Training iteration

Possibility of training large model in a single GPU

Only keep what is necessary

Forward i
• ai ← ai−1, wi

Fi
aiai−1

5



Training iteration

Possibility of training large model in a single GPU

Only keep what is necessary

Forward i
• ai ← ai−1, wi

Fi
aiai−1

5



Training iteration

Backward i
• δwi ← ai−1, δi ;
• δi−1 ← δi , wi ;
• wi ← wi , δwi

Bi
δiδi−1

6



Selection

Offload layers that cover most memory needs

Greedy selection
• Assume infinite bandwidth
• Start: every layer in GPU
• Choose wi that covers the most memory overflow
• Iterate until memory fits
• A coefficient is introduced for single offloading

7



Schedule

Greedy schedule
• Insert prefetch and offload operations into F’s and B’s
• Data required earlier is prefetched first
• Data produced earlier is offloaded first
• One particular case: wi is sent to CPU after Bi , but only

deleted after Fi

8



Simulation results

0 2 4 6 8 10 12
Bandwidth(GB/s)

0.02

0.04

0.06

0.08

0.10

Th
ro
ug

hp
ut

74 layers, batch 32

Greedy
L2L
ILP
Greedy*

∑
j
uj

Figure: Greedy* represents the Greedy algorithm while weights are not
only offloaded once.

9



10

Rotor+checkmate03



Checkmate

Checkmate provides an optimal solution for rematerializations.

Application
• Can deal with any graphs
• ILP with O(n2) variables
• Implementations based on TensorFlow

11



Checkmate+Rotor

Rotor is efficient, checkmate is general

Combined ideas
• One network can be divided into several blocks: e.g. GPT-2
→ Decoder
• Each block is (probably) small enough for checkmate
• Rotor can solve the schedule based on the solutions from

checkmate

12



Checkmate+Rotor

Rotor is efficient, checkmate is general

Combined ideas
• One network can be divided into several blocks: e.g. GPT-2
→ Decoder
• Each block is (probably) small enough for checkmate
• Rotor can solve the schedule based on the solutions from

checkmate

12



Progress

• Checkmate on PyTorch: obtain the computation graph from
any Torch Module
- We can now open the box and generate the

forward&backward graph
- Each node in the graph can be executed by a torch

function/python code

13


	Introduction
	Weight offloading
	Rotor+checkmate

