Supporting Efficient Workflow Deployment of Federated Learning Systems on the Computing Continuum

> PhD candidate Cédric Prigent, Inria

Advisors Gabriel Antoniu, Inria Alexandru Costan, Inria Loïc Cudennec, DGA MI

24-05-22

Who Am I?

- Cédric Prigent
 - 24 years old

• Education (BSc,MSc)

O University of Western Brittany, Brest

• PhD thesis

- O Inria of the University of Rennes, INSA, Rennes
- O Supporting Online Learning and Inference in Parallel across the Digital Continuum
- Funded by ENGAGE project

My Position in Work Package 2

Investigating various deployment strategies for complex AI workflows

- How different deployment options impact performance metrics in a Digital Continuum
- How can the available infrastructure can be best leveraged in this context
- How the end-to-end performance of the application is correlated to various algorithmic-dependent and system-dependent factors

Computing Continuum

• Interconnected ecosystem

 Allowing complex applications to be executed from IoT devices to HPC Cloud systems.

• Emergence of a space

 In which complex data workflow systems operate over Cloud, Fog and Edge resources

Smart Living Use Case (Proposed by DFKI)

• Non-intrusive load monitoring

- From the global power consumption of the house
- Predict the consumption of each object with a fine granularity
- Predict which object is used at a given moment
- Investigating deployment strategies of AI workload in this context

ML Settings We Want to Investigate

• Centralized ML

• Computation on the cloud

- Federated Learning
 - Computation in the edge

Ínnía-

ML Settings Pros & Cons

• Centralized ML

- Taking advantage of the Cloud
 - Stable environment
 - Computing power
- O Bandwidth can be a bottleneck

• Common tools

- TensorFlow
- O PyTorch
- O Kafka
- Flink

- Federated Learning
 - \odot Taking advantage of Edge resources
 - Privacy preservation
 - Reducing bandwidth usage
 - Heterogeneous and unstable environment

• FL frameworks

- TensorFlow Federated
- O Flower
- FedML
- O FATE

Metrics We Want to Evaluate

• Execution Performance

- O Execution time
- Impact of scaling up
 - Starting from 2 households
 - Scale experiments with E2Clab

Model Precision

- Using Optimization tools
- Energy Consumption

E2Clab

• Deployment tool

- Reproducible experiments
- Testbed Environments

Components

- Layers and Services Manager
 - Reserving physical resources
 - Installing, configuring, launching services
- O Network Manager
 - Defining communication rules
- Workflow Manager
 - Running the components of each service
- O Optimization Manager

Optimization Tool

Parallelize the optimization process

Supports SOTA Bayesian Optimization libraries

Thing Description/Registry

• W3C Web of Things architecture

- Improve interoperability and usability across IoT platforms
- Thing Description (TD)
 - Entrypoint of a Thing
 - O Metadata
 - O Interactions
 - Thing Registry
 - O Manages TDs
 - Query interface

Our Approach

• E2Clab (KerData Team - Inria)

- O Deployment tool
- O Optimization tool

• Thing Description/Registry (DFKI)

- Support semantic orchestration of IoT use cases
- Describe simulated objects

• Goal

- Describe/Orchestrate simulated devices with a same standard
- O Deploy/Optimize the application with E2Clab

Toy Example Provided by DFKI

• Docker-compose

O Services

• Running on a single device

Work in Progress: Deployment on Grid'5000

<u>Next steps</u>: Investigate ML Deployment Strategies

• Complexify the application

- Scaling up the application
 - Add simulated devices (described with TDs)
- Varying network configurations

Investigate Centralized vs Federated Learning performance

- O Depending on application settings
 - Scale of experiments
 - Network settings
- Optimizing the model
 - Using E2Clab optimization tool

Progress Status

<u>Thing Description:</u> To describe and orchestrate IoT devices

<u>E2Clab:</u> For deployment and optimization

<u>Complexifying the</u> <u>application</u>

<u>Scaling up experiments:</u> With more simulated devices

Playing with network parameters

<u>Setting up the problem</u>

Use case: Smart homes

Investigate performance of ML settings: Centralized & FL

<u>With several metrics</u>: Execution time, Model accuracy, Energy consumption

Deploying the application on Grid'5000

Small example provided by DFKI

- Understand how it works
- How to deploy it using E2Clab?

<u>Investigating</u> <u>Centralized vs Federated</u> <u>Learning performance</u>

Using <u>specific metrics</u>

Using <u>E2Clab optimization tool</u> to tune hyperparameters

